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In  the presence of an air stream, a uniform liquid film on a horizontal flat plate 
may be unstable to small disturbances, and waves may arise. In  this paper the 
hydrodynamic stability of thin liquid films is examined both experimentally and 
theoretically. 

The experiments concern water films thinner than those which have been 
examined in the past. It is found that, when the film thickness is sufficiently 
small, a previously unknown type of instability occurs. The theoretical analysis 
explains this surprising phenomenon. 

Due to interaction of the mean airflow and small disturbances of the liquid-air 
interface, normal and tangential stress perturbations are produced at  the liquid 
surface. It is shown that small wave-like disturbances become unstable when the 
joint influence of the component of normal stress in phase with the wave elevation 
and the component of tangential stress in phase with the wave slope is sufficient 
to overcome the ‘stiffness’ of the liquid surface due to gravity and surface tension. 
It is found that the destabilizing role of the tangential stress component is 
dominant for very thin films, and that instability may occur whatever the 
velocity of the air stream, provided the film is made sufficiently thin. 

1. Introduction 
Experimental investigations of wind-generated waves in horizontal liquid films 

have been carried out by Hanratty & Engen (1957), van Rossum (1959) and 
Cohen & Hanratty (1965). In these, the thinnest films examined had thicknesses 
of about 0.05 cm. When the airflow is sufficiently large, instability arises in such 
films owing to the irreversible transfer of energy from the airflow to small surface 
disturbances. The theoretical stability problem for this case has been considered 
by Cohen & Hanratty (1965) and by Craik (1965). 

Films of the type in question have moderately large Reynolds numbers, and 
may be regarded as systems with fairly low internal damping. For these, in- 
stability occurs when the viscous dissipation is insufficient to balance the energy 
transfer to a corresponding neutral wave. On the other hand, for films thinner 
than these, the Reynolds numbers are smaller and the internal damping is larger. 
Because of this increased internal damping, the ‘dynamic ’ instability which 
arises in thicker films is less likely to occur in very thin films. 

An experiment is described in $ 2  which concerns water films thinner than those 
investigated previously. In  this experiment a new type of instability was dis- 
covered, which is different in character from that observed in thicker films. 
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A theoretical investigation of the stability of such thin films occupies the 
remainder of this paper. 

If turbulent fluctuations in the airflow may be disregarded, the undisturbed 
state of the system can be treated theoretically as one of two-dimensional plane 
parallel flow. As is customary in problems of this general type, the system is 
regarded as having an arbitrary small disturbance, the Pourier components of 
which are assumed to be dynamically independent. Since each Fourier com- 
ponent is a solution of the linearized equations of motion, it is sufficient to 
examine the behaviour of a general harmonic disturbance. Also, since every 
periodic three-dimensional disturbance may be treated in terms of a correspond- 
ing two-dimensional problem (see Lin 1955, gg3.1, 5 .2 ) ,  only two-dimensional 
harmonic disturbances need be considered. 

In  the presence of a prescribed harmonic disturbance of the air-liquid interface, 
the stresses exerted by the airflow upon the interface may always, in principle, 
be calculated. Thus, for a given airflow, a general relationship between the 
kinematical and stress conditions a t  the interface may be determined. This 
permits the formulation of the precise boundary conditions to be satisfied by the 
liquid film at  the interface, for any small periodic disturbance. These boundary 
conditions, the equations of motion of the liquid and the two remaining boundary 
conditions at the rigid wall together constitute a complete boundary-value 
problem; and its solution yields a relationship between the properties of the 
primary flow and those of the disturbance. From this relationship may be 
deduced the conditions governing the occurrence of instability in the liquid film. 

The present method, then, treats the problem in two parts: namely, an evalua- 
tion of the surface stresses exerted by the airflow upon a prescribed disturbance 
of the boundary, and the solution of the stability problem for the liquid film. As 
was indicated by Benjamin (1959), this method has considerable advantages over 
one in which the complete stability problem is posed for the system: the latter 
approach is likely t o  lead to great complexity, with an accompanying loss of 
physical insight. 

Since the behaviour of the liquid film is largely governed by the stresses exerted 
upon its surface by the airflow, fairly precise estimates of these stresses are 
obviously desirable. In  general, the air stream is turbulent, and, consequently, 
random fluctuations of stress exist at the liquid surface. However, although the 
resonant response of a liquid surface to random pressure fluctuations is an 
important process in the generation of ocean waves (see Phillips 1962), a reson- 
ance mechanism of this type is unimportant in the present problem. The reason 
for this is that the velocities of the convected fluctuations in the airflow are 
always much greater than the 'natural' wave velocities in liquid films, thus 
permitting only a very weak response of the surface. 

The surface stresses produced by interaction of the mean airflow with small 
periodic perturbations of the bounding surface-here, the surface of the liquid 
film-have been evaluated by Miles (1957, 1959, 1962) and by Benjamin (1959) 
for mean air-velocity profiles of boundary-layer type. Although their ' quasi- 
laminar ' flow model entirely neglects the turbulent fluctuations of the airflow, 
there is a considerable amount of experimental evidence that it gives a good 
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approximation to the actual pressure component in phase with the wave eleva- 
tion (see Benjamin 1964). However, it has not yet been directly verified that this 
theory gives satisfactory estimates of the remaining (smaller) stress components. 
Indeed, the interaction between small surface perturbations and the turbulent 
fluctuations in the airflow might give rise to systematic surface stresses which are 
not negligible compared with those arising from interaction of the surface 
perturbations and the mean airflow. 

In  the stability problem to be examined, precise estimates are required for only 
two stress components, and one of these is the pressure component in phase with 
the wave elevation, for which the quasi-laminar model appears to be adequate. 
The second component required is that of tangential stress in phase with the 
wave slope. For lack of a better estimate of the latter component, that given by 
the quasi-laminar theory is used here; it seems reasonable to hope that this 
estimate is at least of the correct order of magnitude. In fact, the substitution of 
these precise estimates is delayed until a fairly advanced stage in the analysis, 
the surface stresses being represented until then by suitable parameters. This 
procedure facilitates the physical interpretation of the results. 

The initial formulation of the stability problem for the liquid film has much in 
common with that of Miles (1960)) which also concerns the stability of liquid 
films in uniform shearing motion. However, in the Miles analysis, the variable 
surface stresses exerted by the airflow were for the most part neglected; and 
instability occurred at  large values of the liquid Reynolds number, due to transfer 
of energy from the primary liquid flow to the disturbance. In  contrast to the Miles 
analysis, the present stability problem involves the solution of the Orr- 
Sommerfeld equation for fairly small values of the liquid Reynolds number, R. 
Also, for sufficiently thin films, the wavelengths h of all relevant periodic disturb- 
ances are likely to be large compared with the film thickness h: it may therefore 
be assumed that the dimensionless wave-number a = 277h/h is small compared 
with unity. 

A method of solving the Orr-Sommerfeld equation for small values of aR and 
of a2 was employed by Benjamin (1957) to investigate the stability of a liquid 
film flowing down an inclined plane under gravity. This method expresses the 
solution as a series of ascending powers in aR and a2. A rather different approach, 
due to Yih (1963)) is equally applicable to the present problem, and might yield 
higher approximations more readily than Benjamin’s method. In  fact, 
Benjamin’s method is used in the present paper, the amount of calculation 
being similar for both methods, to the degree of approximation required. 

Theoretical results relating to the occurrence of instability in water films are 
deduced. These are found to be in general agreement with the experimental 
findings described in 5 2. 

The notation is fully explained in the text. However, the following selective 
list of symbols is provided for the convenience of readers. 

The mean flow: 
h liquid film thickness; 
V velocity of air-liquid interface; 
H thickness of air phase; 
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maximum air velocity; 
viscosities of liquid and air; 
densities of liquid and air; 
kinematic viscosities of liquid and air; 
Reynolds number of liquid; 
Reynolds number of air; 
velocity gradient of air at  liquid interface; 
friction coefficient of airflow; 
mean tangential stress at interface. 

dimensional wave-number ; 
dimensional wave velocity (complex); 
dimensionless wave-number ; 
dimensionless wave velocity; 
dimensionless group velocity; 
air Reynolds number based on wave-number k. 

vertical displacement of air-liquid interface; 
dimensionless normal stress perturbation (II complex) ; 
dimensionless tangential stress perturbation (2 complex) ; 

dimensional stress parameters; 

defined in (5.la, b ) ,  (5.4); 
gravitational acceleration; 
coefficient of surface tension; 
(Froude number)-l; 
(Weber number)-l; 
defined in (9.3), (9.4)) (9.5). 

2. The experiment 
2.1. The apparatus 

The experiment was initially conducted in a closed rectangular channel 46 in. 
long, 11.4in. wide and 6-0 in. high. The channel bottom consisted of a single sheet 
of plate glass, and the sides and top were of Plexiglas. A later modification 
reduced the channel height to l.Oin. Throughout the experiment, the plate glass 
bottom was horizontal. A diagram of the apparatus is given in figure 1. 

The airflow was provided by a large fan which drew air through the apparatus 
from the atmosphere. To straighten the flow, lengths of honeycomb grid were 
situated at  either end of the channel; and, to reduce vibrations, the fan was con- 
nected to the channel by some flexible ducting. Airflow measurements were made 
by means of a Pitot-static tube, which could be inserted through a small hole in 
the top of the channel. This tube was mounted on a device which enabled altera- 
tion and accurate measurement of its height above the channel bottom. 

Water was introduced into the channel from a reservoir situated in the entry 
section, in front of the bottom glass plate and behind the honeycomb grid. The 
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water was supplied to this reservoir from a head tank through a needle valve 
which permitted very fine adjustment of the flow rate. The reservoir contained 
a closely fitting piece of sponge rubber, from which the water exuded on to the 
plate. Interference with the airflow was kept at  a minimum by ensuring that the 
surface of the sponge was level with the glass plate. 

-9 
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FIGURE 1. Diagram of apparatus (not to scale). 1, Fan; 2, flexible ducting; 3, honeycomb 
grid; 4, Pitot-static tube, attached to manometer; 5,  needle valve controlling flow from 
head tank; 6, sponge-filled reservoir; 7, water film; 8, water exit; 9, measuring jar. 

At the downstream end of the channel, the water flowed into a V-shaped 
reservoir fitted with an outlet which allowed the water to be collected in a 
measuring jar; by this means the flow rate could be determined. By careful 
levelling and scrupulous cleaning of the glass plate, very thin uniform water 
films could be maintained in the presence of an airflow. 

Sections of 20 cm length were marked off in the channel by pieces of measuring 
tape fixed to the underside of the glass plate. The surface velocity of the water 
film could be found by sprinkling lycopodium powder on to the surface, then 
timing individual particles with a stopwatch as they traversed one or more of the 
sections. By taking measurements at  several points across the width of the 
channel, the mean surface velocity could be determined graphically. 

Since the surface of a uniform film was horizontal, the motion was independent 
of gravity. Also, since the ratio of film thickness to channel height was small, the 
pressure gradient required to maintain the airflow had negligible effect upon the 
velocity profile in the water film. Therefore, since the film was subject to a uni- 
form shear stress, the velocity profile in the liquid was very nearly linear, and the 
mean velocity of the film was half the surface velocity. Since the surface velocity 
V ,  the volumetric flow rate Q and the channel width w are known, the mean film 
thickness h may be found from the expression h = 2Q/Vw. 

2.2 Observations 

When the airflow was kept constant, the effect of decreasing the liquid flow rate 
was to decrease the film thickness. For several constant values of the airflow, the 
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film thickness was decreased in this way from a fairly large value. The following 
is typical of the sequence of events observed in the channel of 1 in. height: 

(i) A ‘pebbled’ surface occurred for thick films; (ii) regular waves travelling 
down the channel were obtained on decreasing the film thickness; (iii) these waves 
disappeared for still thinner films, leaving an essentially smooth surface; (iv) for 
very thin films, the surface again exhibited disturbances which are described 
below; (v) when the flow-rate was decreased still further, dry patches formed on 
the plate. More satisfactory results were obtained using the 1 in. channel than 
using the 6in. one. For the latter, the air velocity could not be made sufficiently 
large to cause case (i), and the waves of case (ii) were much less well defined than 
in the 1 in. channel, making quantitative investigation impossible. Otherwise 
the results were similar. Photographs of cases (i) to (iv) are shown in figure 2 
(i)-(iv) (plate 1). When the air velocity was sufficiently large, the stable regime 
(iii) disappeared, and disturbances of types (ii) and (iv) could occur simul- 
taneously (see figure 3, plate 2 ) .  Cases (i), (ii) and (iii) correspond to three of the 
flow rdgimes observed in earlier experiments, but the additional unstable r6gime 
(iv) has not previously been investigated. For convenience, the waves of case 
(ii) will be called ‘fast ’ waves and those of case (iv) ‘slow ’ waves. 

The ‘fast ’ waves were straight-crested and apparently sinusoidal, with wave- 
lengths of 1-2 cm, and their velocity of propagation was considerably larger than 
the velocity of the liquid surface. On the other hand, the ‘slow’ waves were of an 
obviously non-periodic nature, having comparatively steep fronts and long rear 
portions. These waves were slow moving, with velocities somewhat less than that 
of the liquid surface. The wave-crests extended over most of the width of the 
channel, and were generally curved concavely in the direction of motion (see 
figure 2(iv), plate 1). 

With a constant airflow, the amplitude of ‘slow’ waves increased as the mean 
film thickness was decreased. Unfortunately, no direct means of measuring local 
wave displacements was available; but local values could be obtained which were 
clearly several times greater than the mean film thickness. By use of lycopodium 
powder, the local surface velocity could be observed. On the long rear portions 
of the waves, this was somewhat larger than the mean surface velocity; but, in 
the vicinity of the crests, the velocity became very small, then again increased 
on the front portions. 

Just  after their inception, successive ‘slow’ waves were a t  least lOcm apart, 
and sometimes as few as three or four crests occurred in the whole length of the 
channel. However, when the waves grew in amplitude, their spacing became 
irregular, due to the dependence of wave velocity on amplitude. At the high air 
velocities when ‘fast, and ‘slow’ waves occurred together (figure 3, plate 2), the 
distances between the crests of both wave-types were reduced. 

The stable film of case (iii) was almost mirror-smooth, the only disturbances of 
the surface being minute striations parallel to the direction of the airflow. The 
presence of these striations was observed also in cases (ii), (iv) and (v), but could 
not be detected in case (i) because of the intense agitation of the water surface. 
They were probably caused by small fast-moving eddies in the turbulent air 
stream : if so, their minute size confirms the view expressed in the introduction, 
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that the effect of random turbulent stresses is insignificant. 
Measurement of the air velocity at various heights above the liquid surface 

revealed that the velocity profile closely resembled that for turbulent flow in 
a smooth-walled channel. The maximum velocity occurred almost midway 
between the water surface and the roof of the channel, there being no noticeable 
asymmetry of the velocity profile due to the different natures of the upper and 
lower boundaries. 

Measurements were made of the conditions in the 1 in. channel giving rise t o  
transition from ‘pebbled’ flow to two-dimensional ‘fast’ waves, and from ‘fast’ 
waves to a stable film. The transition from the stable regime to ‘slow’ waves was 
examined in both the lin. and 6in. channels. The following procedure was 
adopted. 

The airflow was set at  a constant value, and the maximum air velocity was 
determined. The liquid flow rate was gradually decreased from a fairly large 
value, until the required transition occurred, and it was then measured. The 
mean surface velocity was found and the film thickness was calculated as 
described above. The wave velocity and corresponding surface velocity were also 
determined; but, for this, the flow rate had generally to be adjusted to a value 
slightly different from that at transition, in order to obtain sufficiently distinct 
waves. These observations were repeated for several values of the airflow. 

The small disturbances which occurred near transition were best seen by 
viewing along the plane of the surface. For photographic purposes, the channel 
could be illuminated by a small floodlight placed beyond the honeycomb grid at 
the channel entrance. With this arrangement, very small disturbances of the 
surface cast a distinct ‘shadow’ upon a sheet of paper attached to the underside 
of the glass plate. 

Results for the 1 in. channel are shown in figures 4-7 and in table 2,  and those 
for the gin. channel are shown in table 1. 

Air velocity U, (cm sec-l) 336 505 543 673 683 
Film thickness h (cm) 0.0128 0.023 0.0218 0.0355 0.0307 
Surface velocity V (cm sec-l) 0.355 0.73 0.85 1.7 1.7 

TABLE 1.  Transition to ‘slow’ waves in the 6 in. channel. 

2.3. Discussion of results 

In  figure 4, the maximum air velocity U, is plotted against the velocity gradient 
V / h  in the water film, and these results are compared with the corresponding 
curve for turbulent airflow through a smooth-walled channe1.t The close agree- 
ment confirms that the velocity profile in the film is linear (and hence laminar) : 
it also indicates that, to good approximation, the airflow over the water surface 
may be regarded as aerodynamically smooth. 

t For a mean velocity profile which obeys the f t h  power law (see Schlichting 1960, 
p. 506), we have U0/v* = 8.74(Hv,/2va)f, where H i s  the channel height, v, is the kinematic 
viscosity of air and v* is the friction velocity. By definition, pa.$ equals the shear stressat 
the wall, which is here pV/h, pa being the density of air and p the viscosity of water. These 
results yield the relationship between U,, and V / h  shown in figure 4. 



376 

200 
.- 

8 

A .  D.  D. CraiE 

' 

r 
3 - 
I 
0 
m o 600 - 

h 
ia 
.3 

13 
6 
.- 

0 30 60 90 120 150 180 
Surface velocity/film thickness (see-l) 

FIGURE 4. Maximum air velocity plotted against the ratio of surface velocity to film 
thickmss. The points marked + , 0 and x denote conditions at transition between cases 
(i) and (ii), (ii) and (iii), (iii) and (iv) respectively. 

In  figure 5, the film thickness h is plotted against the maximum air velocity U, 
for the three transitions: while, in figure 6, the corresponding film Reynolds 
numbers R = Vh/v are shown against the air Reynolds number R, = U,H/v,, 
where Hi s  the channel height and v, v, are the kinematic viscosities of water and 
air respectively. 
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FIGURE 5 .  Maximum air velocity plotted against thickness of water film for the 
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The most remarkable feature of these results-and of those for the 6 in. channel 
-is the appearance of ‘slow’ waves for all values of the air velocity, when the 
film thickness is made sufficiently small. (In fact, these waves were observed for 
air velocities considerably smaller than those recorded in figure 5, but quantita- 
tive results were unobtainable because of the difficulty of maintaining sufficiently 
thin, uniform films.) Thus, contrary to expectation, the thinnest films are not the 
most stable: instead, there is a non-zero thickness for which a water film is most 
stable. In the 1 in. channel, this thickness was about 0.046 em. 
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For ‘slow’ waves, corresponding wave velocities and surface velocities are 
shown in figure 7. The results plotted are for the smallest waves the velocities of 
which could be accurately determined; but, even for these, the amplitudes might 
not have been small compared with the mean film thickness. The points fall upon 
a straight line, the wave velocity always being slightly less than the surface 
velocity. ‘Slow’ waves of larger amplitude were observed to travel even more 
slowly, but quantitative measurements were not made, since the wave- 
amplitudes could not be determined. However, it was noticed that the velocities 
of these larger waves did not become less than half the mean surface velocity, 
except when the film thickness was clearly non-uniform across the width of the 
channel. (For the largest waves, localized dry patches frequently formed in front 
of the crests, disrupting the uniformity of the film.) 
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For ‘fast’ waves just beyond the transition from a stable film, the variations 
of surface velocity and wave velocity with film thickness are shown in table 2. 
Unfortunately, the accuracy to which these larger wave velocities could be 
determined by direct observation was somewhat restricted by the shortness of 
the channel. 

6 

0 

Surface velocity (cm sec-l) 

FIGURE 7. Velocity of ‘slow’ waves plotted against surface velocity of 
water film. 

Since the experiment was designed to investigate very thin films, the results 
for ‘slow’ waves are much more accurate than those for ‘fast ’ waves. In particular, 
there is a considerable spread in the results for the transitions from stable films 
to ‘fast’ waves, and from ‘fast ’ waves to three-dimensional disturbances. In  
contrast, the transition from stable films to ‘slow’ waves was sharply defined. 

Film thickness h (em) 0.0535 0.0665 0.082 0.086 0.12 0.154 
Surface velocity P (cm see-l) 6.8 6-45 6.67 6.65 5.1 3.63 
Wave velocity c’ (cm sec-l) 11.9 12.0 12.0 12.8 19.6 - 

TABLE 2 .  Properties of ‘fast’ waves just beyond transition from stable film. 

3. The primary flow 
In  the following theoretical analysis, all quantities are made dimensionless 

relative to the film thickness h, the velocity of the liquid surface V and the liquid 
density p. The Reynolds number of the film is defined as R = Vh/v, where v is 
the kinematic viscosity of the liquid. The motion of the liquid is assumed to be 
laminar; and, because of the mean tangential stress exerted by the air stream, the 
basic velocity profile in the liquid is taken to be linear. The primary motion of the 
liquid is related to that of the air by the equation 

which expresses continuity of tangential stress across the interface. Here 
p( V/h)  = pa u;, (3.1) 
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p ( = pv) and pa are the viscosity coefficients for the liquid and air respectively, 
and U;  is the dimensional vertical velocity gradient of the airflow a t  the interface. 

Dimensionless co-ordinates x and y are chosen such that the direction of flow 
is parallel to the x-axis, and the positions of the rigid wall and the undisturbed 
liquid surface are denoted by the planes y = - 1 and y = 0 respectively. The 
dimensionless primary velocity profile in the liquid is then 

U ( y )  = 1 +y. (3.2) 

A sketch of this configuration is given in figure 8. ,=::- y = 71 (x, r )  

U=l+y 

y=-1 

FIGURE 8. Sketch of shear flow and surface disturbance. 

4. The stability problem 

two-dimensional wavelike perturbation of the liquid surface is represented by 
The nomenclature used is similar in many respects to that of Miles (1960). A 

y = ~ ( x ,  t )  = 8es4x--et), 

where a is the (real) dimensionless wave-number and c is the dimensionless wave 
velocity, which may be complex. The wave amplitude is assumed to be sufficiently 
small for the problem to be linearized. 

The continuity equation may be satisfied by introducing the perturbation 
stream function 

$(x, Y, t )  = - $(Y) T ( X ,  t ) ,  

such that the perturbation velocity components are 

u = $, = -#V, 2, = -$x = ia$y, (4.1 a, b)  

where the prime denotes differentiation with respect to y. Substituting (3.2) and 
(4.1 a, b )  into the linearized Navier-Stokes equations, we obtain 

$iV - 2a24” + E4$ = iaR( 1 + y - c )  ($’f - E2$) ,  

p = [( 1 + y - c) 4’ - $ - (iaR)-l($”’ - a24’)] T(X, t ) ,  

T = R-’(u,+v,) = -R-’ ($“+E~$)~(X,~) ,  

(4.2) 

(4.3) 

(4.4) 

where p and 7 are the perturbations of pressure and of shear stress respectively. 
Result (4.2) is the Orr-Sommerfeld equation in the form appropriate for the 
present velocity profile. 
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Since the perturbation velocity components must vanish at the wall, two 

(4.5a, b )  
boundary conditions are 

Also, the linearized kinematic condition at the liquid surface is 

q5( - 1 )  = q5’( - 1) = 0. 

that is, 

The two remaining boundary conditions concern the normal and tangential 
stresses at the air-liquid interface. We define the parameters II and C, which 
are generally complex, by 

Cyy = I M x , q ,  czy = % @ 7 q ,  (4.7) 

where gyy and gxy are the dimensionless normal and tangential stress perturba- 
tions exerted a t  the interface by the air stream. The condition for continuity of 
tangential stress at the interface is 

r = gXy, 

or, on using results (4.4), (4.6) and (4.7)) 

y = 0; 

q5”+[a2+RS(l-c)-l]r# = 0, y = 0. (4.8) 

The condition that the capillary and gravitational forces resisting displacement 
and the normal stresses on either side of the interface should be in equilibrium is 

- p + 2 R - l ~ ,  = T ~ z x + ( I I - G ) ~ ,  y = 0; 

the parameters G and T being defined as 

G = gh/V2, T = y/phV2, 

where g is gravitational acceleration and y is the coefficient of surface tension at  
the interface. The quantities G-l and T-l are seen t o  be the Froude and Weber 
numbers of the film. On using ( 4 . l a , b ) ,  (4.3) and (3 .6 ) ,  this condition becomes 

(1-~)$’-$-(i~””(q5’’’-3a~$’)-(Ta~+G-rII)(l-~)-~$ = 0, y = 0. (4 .9)  

Apart from an arbitrary amplitude factor, the linearized characteristic-value 
problem is completely specified by the fourth-order differential equation (4.2) 
and the four boundary conditions (4.5a., b) ,  (4.8) and (4 .9) .  The requirement that 
all four boundary conditions should be satisfied yields an eigenvalue equation 
for c,  from which may be deduced the conditions governing the stability of the 
film, 

5. The surface stresses 
The results to be described are taken from Benjamin’s paper (1959)) which 

incorporates the earlier work of Miles (1957) and extends it by the inclusion of 
first-order viscous terms. For convenience, reference is made to Benjamin’s paper 
by use of the parentheses ( )  containing the appropriate page or equation 
number. In  later work, Miles (1963) has developed a method for calculating the 
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surface stresses, which is free from many of the approximations implicit in the 
estimates given here. However, Benjamin's estimates may be expressed in simple 
analytic form, and are sufficient for present purposes. 

The estimates were derived for flows with dimensional velocity profiles U(y), 
which tend to some constant value U ,  as y becomes large. For flow over a rigid 
wavy boundary (i.e. with c = O),  the results <7.11), (7.12) and (2.13) give the 
following expressions for the normal and tangential stress parameters 11 and C : 

2 U;h2 
where A = I d  (&) (T)3, I = Srn (U/Uo)2e-a~d(ay). (5 . la ,b)  

0 

(Additional factors of 1 are included in the expressions for X and A; since, on 
(p. 198), Benjamin shows that the estimates are thereby improved. A misprint 
in (7.12) gives the exponent of X as Qni instead of +Ti.) Use of (3.1) and the 
relationship v, U; = cf U;, where cf is the friction coefficient, yields the results 

II = (a/Rcf)[I-  J 3 s + i ( Z c f - ~ ) ] ,  (5.2) 

C = (2,8I/,/3 cf) e k 3 ( a R ) - 4 ,  (5.3) 

2,8/J3 = 1 .372(~ , /~ )*  (p,/p)f. (5.4) 

where s = 0-644AI, A = ( I / c f )  (pulp)# (aR)-%a2, 

The term aI/Rcf in II is independent of the air viscosity, and could be derived 
from the (linearized) inviscid equations of motion for the air. On the other hand, 
the remaining terms in II, and the entire contribution to C, depend explicitly on 
the air viscosity, since they are due to viscous Reynolds stresses near the 
boundary. (Since the boundary is rigid, with c = 0, there is no contribution to 
IT due to inviscid Reynolds stresses in the critical layer where U ( y )  equals c.) 

Since a,, equals 117 and a,, equals C7, the real parts of II and C correspond 
to components of normal and tangential stress which are in phase with the wave 
displacement r(x,t), while the imaginary parts of IT and C denote stress com- 
ponents which are in phase with the wave slope @/ax. 

The accuracy of the above estimates depends on the validity of several 
assumptions about the nature of the airflow. These assumptions mainly concern 
the relative magnitudes of various length-scales of the problem, which are: the 
wavelength of the disturbance, the effective boundary-layer thickness, the width 
of the region near the boundary where the velocity profile is approximately 
linear, and the thickness of the 'wall friction layer' within which viscosity has 
an appreciable effect on the flow perturbation. A full discussion of these assump- 
tions is given by Craik (1965). There, it  is also shown that the results (5.2) and 
(5.3) may be applicable to turbulent airflows in a channel of finite height H ,  
provided the wavelength of the disturbance is not large compared with the 
channel height: i.e. provided aHJh O( 1). In  this case, the mean velocity profile 
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U ( y )  is symmetrical, and U, is redefined as the maximum velocity in the centre 
of the channel: also, the upper limit of infinity for the integral I is replaced by 
the channel height H .  

The range of validity of results (5.2) and (5.3) is best indicated in terms of the 
air-stream Reynolds number R, = ti,h/av, based on the wave-number of the 
disturbance. If the viscous sublayers adjacent to the walls occupy only a small 
fraction of the channel height, the mean air velocity profile is typically of the form 

U(y)/U,  = (2yh/H)7, 0 < y < H / 2 h ,  

(5.5) 

For this velocity profile, for values of cf which are O( and for aH/h 2 O( l),  
all but one of the conditions on the validity of the results (5.2) and (5.3) are found 
to  be fairly well satisfied when R, is 0(103) ,  0 ( 1 0 4 )  and, possibly, O(lO5). The 
exception is the condition that A should be small compared with unity, which is 
satisfied only if R, is not less than about lo4 (unless 1 is small, when values of 
O( 103) might suffice). 

When the wavy disturbance has a small (dimensional) velocity c' relative to 
the material surface, the stresses are similar to those exerted on a rigid boundary: 
in the present example, this is so when the condition d / t &  < O( 10-l) is satisfied 
(see Benjamin (p. 182) and Craik 1965). Also, the results are applicable to aliquid 
surface, provided the periodic horizontal velocity component a t  the surface is not 
large (see (pp. 171-2)). Both these conditions are well satisfied in the present 
problem. 

In  brief, if the role of turbulent fluctuations may be neglected-which is by no 
means certain-the estimates (5.2) and (5 .3 )  might apply to turbulent flows in 
a channel over a considerable range of the Reynolds number R,. Unfortunately, 
justification for using these estimates to denote the stresses in the experiment 
described in 9 2 is not as readily forthcoming as one might wish: for, there, R, 
was typically O( lo3),  and therefore the condition that A should be small was not 
well satisfied. 

6. The governing equations 
The Orr-Sommerfeld equation (4.2) may be re-written as 

p = (@ + &I) f' - (? + 2y) a24, (6.1) 

where @ = i a R ( 1 - c ) + 2 a 2 ,  Q=iaR, ? = i a R ( 1 - c ) + a 2 .  

Following Benjamin's method of solution, we replace q5 in (6.1) by the series 

m 

$QY) = c A,yn, 
n= 0 

where the A ,  are constants. This leads to the recurrence relation 

n(n - 1) (n - 2 )  (n - 3 )  A,  

= (n- 2) (n- 3)@An-2-/- (n- 3 )  (n-4) Q 4 - 3 -  a2(?A,-4+ gAn-5), (6.2) 
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by which $(y) may be expressed as a series of ascending powers in y, with the 
parameters aR and u2 also occurring in successive powers. The resultant expres- 
sion contains the four disposable constants A,, A,, A ,  andA,. 

If the conditions 
a2 < 1 ,  aR < O ( l ) ,  aRIcl < O(1) (6 .3a ,  b , c )  

are satisfied, the series for 4 converges very rapidly, and only the first few terms 
need be considered. For simplicity, the following analysis is confined to cases 
where these conditions hold. The recurrence relation (6 .2)  then yields the approxi- 
mate expression 

#(y) = A ,  f A , y  fAz(y2+&@y4+ &&/5) fA3(y3 + 7&@y5+ &&I6), (6 .4 )  

where terms of the second and higher orders of small quantities have been 
omitted from each of the coefficients of A,, ,, ,. 

On replacing 4 by this expression in the boundary conditions (4.5a, b ) ,  (4 .8)  
and (4.9), the following set of equations is obtained: 

A,-A,+A,( l  + &fj -&$) - A3(1 + &3- &Q) = 0, 

A, - A,(3 + 49- 2zg) + A , ( 3  + $9- &@) = 0, 

Ao[a2 + RE( 1 - c)-'] + 2A2 = 0, 

A , i a R [ l +  (!Pa2 + G - IT) ( 1  - c)-'] - A1(@ +a2) + 6 A 3  = 0. 

Excluding the trivial case A,, ,, , = 0, it is evident that these four equations are 
consistent only when the determinant of the coefficients of A,,,,,,, is zero. In  
evaluating this determinant, terms of the second and higher powers of 8 and @ 
may be neglected by virtue of conditions (6 .3  a, b, c ) ,  leading to the result 

where terms of order aR, a,, ER and Xa have been omitted. This equation 
determines c as a function of a, R and the surface properties represented on the 
left-hand side. 

Equation (6 .5)  is a quadratic in (1 - c )  with the solution 

( 1 - C )  = [ ~ { ~ 2 + ~ [ T ~ 2 + G - - + ( 3 i C / 2 ~ ) ] ) 3 ,  

where 

However, it  is desirable to examine the real and imaginary parts of c separately, 
and we therefore write 

[ = $$+ (5i/4aR) ( 1  +%a2). 

c = cr+ici ,  rI = rI,+;ni, I; = Xr+i&, 
On separating the real and imaginary parts of (6 .5 ) ,  we obtain 

;(cr- l ) 2 + g ( ~ r -  l ) - (c i /uR)  ( ~ + ~ + ~ z ~ + $ u R c , )  = T C X ~ + G - I I , . - ( ~ X ~ / ~ C L ) ,  (6 .6 )  

ci{S2-(cr- 1 ) + f > + { ( c r -  l ) / ~ t R ) ( 3 + * ~ )  = - I I i + ( 3 E r / 2 a ) .  (6 .7)  
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7. The stability condition 

simplify to 
For neutrally stable disturbances, ci is zero, and equations (6.6) and (6.7) 

(7.1) 

(7.2) 

S(C,- 1 ) 2 + i ( ~ r - 1 )  = Taz+G- IIr-(3Ci/3a) ,  

(c,- 1) (3+Y-a2) = aR(-IIi+ ( 3 Z r / 2 ~ ) ] .  

Also, when &xR1II,I and +R& are small compared with unity, (7.1) and (7.2) 
yield the simple approximate results 

Ta2 + G - II, - (3ZJ2a) = 0, (7.1 a )  

c, = 1. ( 7 . 2 ~ )  

Expressed in dimensional variables, these results are 

pg+yk2 = P,+ (3q. /2kh),  (7.1 b )  

el = V )  (7.2b) 

are where c', k are the dimensional wave velocity and wave-number, and P,, 
the dimensional stress parameters, defined by 

P, = (pVZ/h) rr,, q = (pV2/h)X:i. 

We note that P, and q are independent of the properties of the liquid film. 

(6.6) and (6.7). In  particular, when laciR1 
mate result c, = 1; and substitution of this value in (6.6) yields 

When ci is non-zero, the rate of amplification or damping may be found from 
1, equation (6.7) gives the approxi- 

when small terms are neglected. The corresponding dimensional amplification is 

(7.3 a )  

When laci RI is not small compared with unity, the wave velocity c, is found, 

and, when aR I I t i \ ,  RE, and a2 are all much less than unity, this simplifies to  

The conditions (7 . lb )  and (7.2b) for neutral stability do not depend upon the 
existence of a basic shear flow in the liquid. (In fact, equation (7.1 b) may be 
derived very simply by neglecting the primary flow throughout.) Equation 
(7.2b) states that the wave travels with the velocity of the fluid particles com- 
prising the surface, and (7.1 b) expresses the balance of forces at the surface. 

It is seen from (7 .3  a )  that instability occurs when 

P, + ( 3 q / 2 k h )  > pg + yk2;  (7.5) 

that is, when the effect of the surface stresses is sufficient to overcome the 



Plate 1 

FIGURE 2. (i) Pebbled flow. (ii) 'Fast' waves. (iii) Stable film. (iv) 'Slow' waves. 
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1’1C:URE 3. ‘Fast’ and ‘slow’ waves at large air velocity. 

Plate 2 
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restoring forces of gravity and surface tension. Although P, is generally much 
greater than Ti,  the effect of the variable shear stress cannot be neglected when 
kh is small; indeed, the term in becomes dominant for sufficiently small values 
of kh. Because of this, instability must always occur in sufficiently thin films, 
whatever the magnitude of the airflow. Thus, with a given airflow, instability 
can always be induced in an initially stable film by decreasing its thickness. 
These results are in qualitative agreement with the experimental findings of 0 2 .  

The physical explanation of this surprising phenomenon is as follows. The 
component of normal stress represented by P, or IT, is in phase with the wave 
displacement, and it attempts to deform the liquid surface by exerting an 
upwards force upon the crests and a downwards force upon the troughs of small 
periodic disturbances. Also, the tangential-stress component represented by 
or Xi is in phase with the wave slope, and it has the effect of accelerating the liquid 
on the windward slopes while retarding that on the leeward slopes. The latter 
mechanism tends to displace fluid towards the crests and away from the troughs 
of existing small disturbances, thereby increasing their amplitude. The thinner 
the film, the more effective is this mechanism : for, in very thin films, the perturba- 
tion velocity component in the horizontal direction is much greater than that in 
the vertical, and the influence of the variable tangential stress extends through- 
out the whole film. The development of unstable disturbances is governed by 
continuity considerations. Their growth rate is proportional to the rate of accu- 
mulation of liquid near the crests; and this, in turn, is inversely proportional to 
the liquid viscosity, in agreement with result (7.3 a) .  

The present type of instability is entirely different from that likely to occur in 
thicker films. For films with moderately large Reynolds numbers, instability is 
due to the irreversible transfer of energy from the mean airflow to the disturbance 
through the stress components represented by ITi and 2,. More precisely, in- 
stability occurs when the viscous dissipation within the film is less than the energy 
transfer to a corresponding neutral wave; and such energy transfer can only take 
place through non-conservative forces. These forces are provided by the normal 
stress component in phase with the wave slope and the tangential stress com- 
ponent in phase with the wave displacement. 

In  contrast, for films with small Reynolds numbers, the stress components 
which cause instability are those represented by I'I, and X i ,  both of which act 
conservatively on the wave. Unlike that for thicker films, this type of instability 
is virtually independent of the irreversible processes of viscous dissipation and 
energy transfer through the stress components ITi and Z?. In  this respect, it is 
similar to ' Kelvin-Helmholtz ' instability. (These two distinct types of instability 
fall within the threefold classification of unstable disturbances proposed by 
Benjamin (1963). The instability of moderately thick films usually belongs to 
class B, while that of thin films belongs to class C.) 

8. The stability curves 
In  order to proceed further, we must introduce the precise expressions for 

Elp. and X i  given in (5.2) and (5.3). Since these estimates are good approximations 
only when A is small-that is, when s is small compared with I-sufficiently 
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accurate representations are 
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II, = aI/Rcf, Zi = (/31/cr)a3(aR)-*. (8.1 a, b )  

Since the value of I varies only slightly with considerable changes in a, the 
quantities I/cf  and p may be regarded as constants which depend on the pro- 
perties of the airflow. 

It is convenient to introduce the new parameters d and p ,  defined as 

d = R2G = gh3/v2, 5? = R2T = yh/pv2. (8.2a, b) 

These parameters have the advantage that they remain constant for a liquid film 
whose thickness is unchanged, even though its surface velocity-and hence its 
Reynolds number-may vary. If, for example, curves of neutral stability are 
found which correspond to fixed values of 6 and 5?, each of these is the neutral 
curve for a liquid Jilm of constant thickness. If suitable pairs of values for d and p 
are chosen, stability curves may be obtained over a range of film thicknesses, for 
any liquid. 

On using results (8.1a,b) and (8 .2a ,b ) ,  the condition (7.la) for neutral 
stability becomes 

!Fa2 + O = ( I / c ~ )  [aR + #P(aR)%], (8.3) 

and the neutral curves of R against a may be found by assigning appropriate 
values to c", 5?, I/cf and p. Likewise, curves of constant amplification may be 
calculated from equation (7.3), which now takes the form 

(3(aciB)/a2) + !Pa2+ c" = ( I / c ~ )  [aR + #P(CCR)#]. (8.4) 

Since the dimensional amplification c equals (ac,R) v/h2, such curves have 
constant values of ac, R. 

For given values of R, the wave-number of the most unstable disturbance may 
be found from (8.4) by equating a(ac,R)/aa to zero. This yields the result 

4Ta2 + 2 0  = (I/cf) [ ~ E R  + 4P(aR)%]. (8.5) 

For air over water, p i s  approximately 0.76; also, a typical value for Ifc, is 220 
(corresponding to, say, I ri 0.6 and cf "- 2.7 x With these values, together 
with those for 5? and d corresponding to a water film of thickness 0-0215 em and 
kinematic viscosity 0.0 1 em2 sec-l, curves of constant amplification were calcu- 
lated from equation (8.4) for ac,R equal to 0, 0.01, 0.02 and 0.1. Also, the curve 
denoting the most unstable mode was found from (8.5). 

To facilitate comparison with experiment, the results are presented as curves 
of dimensional wave-number k ( = a/h) against the mean dimensional shear stress 
70, the latter being a property of the airflow alone. The shear stress T, is related 
to the Reynolds number of the film and to the maximum air velocity U, by the 
expressions 

T,, = (,u2/ph2) R = p,cf CJ$ 

The curves are shown in figure 9, the dashed curve being that for the most 
unstable disturbance. For neutral disturbances, the minimum critical value of 
70 is 0.89 g em-l and the corresponding wave-number is 3-0 em-1. 
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0.2 1 
0 1 .0 2.0 3.0 

Shear stress 70 (dyne 

FIGURE 9. Wave-number k plotted against mean shear stress 70 at several constant values 
of the dimensionless amplification aciR, for a water Nrn of thickness 0-0215cm, and 
I/cf = 220. The curve - - - denotes the most unstable disturbance. 

2.0 

- 1.0 

- 2.0 

FIGURE 10. Dimensionless amplification aci R plotted against dimensionless wave-number 
a, for water films of thickness 0.02 ern with R = 3, 7, 10, and for I /c ,  = 220. 

With the same values of Ilcf and p as above, but with values of 5? and t? 

corresponding to a water film of thickness 0.02 cm, the variation of the amplifica- 
tion aciR with wave-number a was found for three values of the Reynolds 
number: R = 3 ,7  and 10. These three curves are shown in figure 10. Although aR 
and aci R are somewhat larger than unity for part of these curves, their values 
never exceed 3, and the curves probably remain reasonable approximations. 

25-2 
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Figures 9 and 10 both reveal that the wave-number of the most unstable mode 
increases considerably for values of the shear stress (or Reynolds number) 
beyond the critical. 

9. The critical case 
In  dimensional quantities, equation (7.1 b )  is 

which may be re-written to express h in terms of k and ro, as 

Now, ah/& vanishes when 

and only one root of this quadratic in k is positive. It is easily shown that 
a2(h-l)/3k2 is positive a t  this root. Thus, for a prescribed value of r,,, there is 
a wave-number k = k, given by (9.2) for which h has a maximum value h,. This 
value h, is the critical film thickness above which all disturbances are damped for 
the given value of ro. 

If, alternatively, the value of h is prescribed, it may be shown from (9.1) that 
8r,/aE vanishes at E = k,. The value of ro a t  k, is the minimum shear stress roc 
capable of sustaining undamped disturbances in a film of thickness h. The critical 
values roc, hc and kc are now examined in more detail. 

The root of equation (9.2) that is greater than zero is 

k, = (gp/2y)* [a + d( 1 + a')], (9.3) 

where 
roc I 2p H CD = - - (-) l. 

P 8 C f  gY 
(9.4) 

It is seen that CD is a dimensionless parameter whose value is determined by the 
properties of the airflow, and which is proportional to the mean shear stress roc. 
On substituting for k, in (9.1), the expression for h, becomes 

The function F(  @) is plotted against 0 in figure 11. 
As @ increases from 0 to 2-8, F ( @ )  and hence h, increase monotonically from 

0 to  00. Accordingly, all liquid films for which the present theory remains valid are 
unstable when @ exceeds 2-3. This is so because, with CD greater than 2-8, there 
is a range of wave-numbers for which the normal-stress parameter rIr is itself 
greater than the sum of the gravitational and surface-tension terms, (G + Ta2). 

As CD increases from 0 to 2-8, k, increases monotonically from (gp/2?)4 to 
(gp/r)*. Thus, for water, where y /p  2: 7 3 ~ m ~ s e c - ~ ,  k, lies between 2-59 and 
3.66 cm-l. 
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0 0. I 0 2  0.3 

(d shear stress 7,,) 

FIGURE 11. The function P(@) plotted against @, with experimental results for the 
1 in. channel (denoted by 0) and for the 6 in. channel (denoted by x ). 

10. Discussion of approximations 
Conditions (6.3 a, b, c) restrict the range of validity of the theory to cases where 

a2 < 1 and aR < O( 1). However, these conditions are not sufficient if the approxi- 
mate equations ( 7 . 1 ~ )  and ( 7 . 2 ~ )  are used. In  the present problem 111,1 is 
generally small compared with 32;,/2a, and may be disregarded. Therefore, from 
(7.2), (cr -  1 )  is nearly equal to +R&. Now, result ( 7 . 1 ~ )  is a good approximation 
to the stability condition (7.1) only if ;(c;,- 1) and $(c,- 1)2 are small compared 
with 32,/2a. On using result (5.3), it follows that these terms are sufficiently 
small provided 

aR < 6, a2(aR)% 4 15cJP.l. (10.1 a,  b )  

With /3 equal to 0.76 for air over water, and with I / c f  typically about 300, condi- 
tion (10.1 b )  requires that a2(aR)% < 0.1. Clearly, both conditions are satisfied for 
sufficiently thin films. 

The greatest film thickness for which ‘slow’ waves were observed was about 
0-05 cm, and the critical wave-number predicted by theory is about 3 em-1. For 
such a film, the critical value of a is around 0-15: also, from figure 6, the critical 
value of R is found to be about 30, giving a value of nearly 4.5 for aR. Because of 
condition (10.1 a),  this is a rather doubtful case; but, for thinner films, the values 
of a2 and aR decrease rapidly. Thus, for a film of thickness 0*035cm, the cor- 
responding critical values are a II 0.1 and aR E 0.75. It is clear that, for films of 
this thickness or less, there is a range of a, including the critical wave-number, 
for which the conditions (6.3a, b, c) and (10.1 a,  b )  are satisfied. 
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The only remaining doubt concerns the validity of the estimates (8.1 a, b )  for 
the surface-stress parameters. The possible effects of turbulence have already 
been mentioned; and, even neglecting these, the results (8.1a7b) do not 
adequately represent the stresses in all experimental situations. In  particular, 
they are unlikely to provide accurate estimates of the stresses experienced in the 
experimental channels described in 0 2. However, even in such cases, the results 
seem likely to be of the correct order of magnitude. 

11. Comparison with experiment 
The above analysis concerns only the temporal development of spatially 

uniform disturbances. However, the results are directly related to those for the 
spatial development of disturbances uniform in time. For, Gaster (1962) has 
shown that, provided the growth rates are small, the spatial amplification of dis- 
turbances uniform in time is approximately equal to the temporal amplification 
of spatially uniform disturbances with the same frequency, divided by the group 
velocity. Consequently, although the waves occurring in experiment are usually 
spatially amplified, the above results should remain applicable for these. 

To compare the above theoretical results with those for the 'slow' waves 
described in 5 3, we require values of I and cf appropriate for the two experi- 
mental channels. On taking the wave-number k to be 3 em-l, and using the air- 
velocity profile (5.5) in the expression (5.lb),  the value of I is found to be about 
0.6 for the l in .  channel, and 0-37 for the gin. channel. Values of cf for the 
1 in. channel may be found from figure 4 by use of the result cf = pV/pa Ugh. 
The actual value changes slowly with the air velocity, but cf = 3.2 x 
may be taken as typical. For the 6in. channel, a similarly obtained estimate is 

On substitution of these values, together with p = 0.76, into (9.4) and the 
cf = 1.5 x 10-3. 

left-hand side of equation (9.5),  it is found that, for the lin. channel. 

@ = 5-1 x lO-'U& F ( @ )  = 39h,, 

and, for the Gin. channel, 

@ = 3-15 x lO-'U& B(@) = 36h,, 

where U, and hc are measured in c.g.s. units. By using these results, the experi- 
mental measurements of h, against U, have been plotted in figure 11, where they 
may be compared with the theoretical curve of B( @) against @. 

In  view of the approximate nature of the estimates for the surface-stress 
parameters, theory and experiment are in reasonable agreement. The displace- 
ment of the experimental results from the theoretical curve is greater for the 1 in. 
channel than for the 6in. one; and, in all cases, the observed critical film thickness 
is larger than that given by theory. This last result suggests that the expression 
(8.1 b )  underestimates the magnitude of the variable tangential-stress com- 
ponent Xi. 

Result (7.2 b )  shows that the dimensional wave velocity of neutral disturbances 
equals the surface velocity of the liquid film, and this result also holds for waves 
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of small amplification. Further, since c,. is virtually independent of 01, the group 
velocity co = c,-t-a(ac,./aa) is very nearly equal to c,.. In  view of this, a non- 
periodic infinitesimal wave suffers very little dispersion (provided its wave- 
number spectrum is effectively all at small values of a); in particular, a long wave 
composed of a narrow band of wave-numbers near the optimum value for which 
aci R is a maximum will propagate with little change in form, but will undergo 
overall amplification at the rate acz R. The observed instability, consisting of 
a succession of apparently independent humps, would appear to be of this general 
character. Since these waves were clearly non-periodic, the distance between 
successive crests bears no relation to the predicted critical wavelength of about 
2 em. 

It is seen from figure 7 that the experimental wave velocities lie closely upon 
the line c, = 0.8. This result agrees reasonably well with theory, but it is desirable 
that the consistent deviation should be explained. Since the wave velocity, and 
hence the group velocity, of amplified disturbances is less than that for neutral 
waves, it  is tempting to conclude that this deviation occurred because the 
observed disturbances were growing in amplitude. In  fact, it may be shown from 
equation (7.4) that c, attains the experimental value of 0.8 when aciR equals 1.7. 

However, there is a more likely explanation of this deviation. We recall that 
the results plotted in figure 7 correspond to the smallest disturbances for which 
the velocities could be determined accurately, but that the velocities of larger 
disturbances were less than these. Because of the small thickness of the experi- 
mental films ( < 0.05 em), it seems likely that the amplitudes of even the smallest 
disturbances were not small compared with the film thickness when their 
velocities were measured. If this were so, their wave velocities would be modified 
by non-linear effects. An examination by Craik (1965) of such finite-amplitude 
disturbances has revealed that the non-linear effects are likely to reduce the wave 
velocity, in agreement with observation. 

I should like to thank Dr T. Brooke Benjamin for his guidance and helpful 
criticism throughout the course of this work. My thanks are due also to Dr W. 
Debler and Mr W. Huizenga of the University of Michigan for their part in the 
design and construction of the experimental apparatus described in 0 2. 
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